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Abstract. To find critical points of O(n) models on the triangular lattice we apply two methods.
First we investigate the Yang–Baxter equations on the triangular lattice. We find only solvable
points directly related to those for the square lattice. Second we construct intersections with the
Potts model. This yields eight branches of critical points, parametrized byn. We establish the
equivalence of these branches with the known critical points of the O(n) model on the square
lattice. Transfer-matrix calculations are performed to obtain the conformal anomaly and the
thermal exponent of these branches. These results include a numerical analysis of aq = 3 Potts
tricritical point. We find analytic relations between Potts and O(n) models, as well as among
O(n) models with different values ofn, and among Potts models with different values ofq.

1. Introduction

The critical behaviour of the O(n) model, a model forn-component spins, has been studied
on the honeycomb lattice [1] as well as on the square lattice [2, 3]. Using a method
developed by one of us [1, 2], critical points of these models could be determined. For the
honeycomb lattice two branches of critical points, parametrized byn, were found, describing
the O(n) critical and low-temperature behaviour. For the square lattice five branches were
found [2]. Two of them are generalizations of those of the branches of the honeycomb lattice
and thus represent the critical and low-temperature behaviour. From a numerical analysis
[3] it appeared that the other branches describe multicritical behaviour, a superposition of
a low-temperature O(n) and a critical Ising model, and a point in the universality class of
the low-temperature O(n+ 1) behaviour.

The partition sum of the O(n) model can be represented as the partition sum of a model
of loops or polygons on the lattice [4]. This loop model is a continuousn generalization
of the separable non-intersecting string model [5]. The critical point is caused by a balance
between the energy and entropy of these loops, already possible on the honeycomb lattice.
The multicritical behaviour on the square lattice is the result of an attractive interaction
between polygons that meet at a vertex. Since the triangular lattice admits the possibility
of three loops meeting in a single vertex, higher-order critical behaviour might be expected
in this lattice. Therefore we have carried out two methods to obtain critical points. First
we have studied Yang–Baxter (YB) equations on the triangular lattice for a fully packed
loop model. These yielded non-trivial solutions which, however, could be identified with
solutions already known for the square lattice. Second we have carried out a similar analysis
for the O(n) model on the triangular lattice as was done for the square lattice in [2]. Using
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the method described therein we have found eight branches of critical points on the triangular
lattice.

This method is based on the existence of renormalization mappings onto the Coulomb
gas. Such mappings have been described for Potts models as well as for O(n) models
[6]. This mapping of the Potts model at its critical temperatureTc leads to a Coulomb gas
with even integer charges. Thermal deviations fromTc are associated with the appearance
of positive unit charges. Negative unit charges correspond to non-Potts critical behaviour,
because these negative charges cannot be translated into Potts-like variables. An O(n) model
being mapped onto the Coulomb gas admits in general all integer charges. However, at the
intersection of an O(n) model with a Potts model the negative unit charges disappear. Thus,
at the intersection the O(n) model is critical, although the Potts model itself need not be
critical. If the negative unit charges lead to a relevant scaling dimension, the O(n) model
is critical in the sense that the free energy is singular as a function of the O(n) parameters.
When this scaling dimension is irrelevant the O(n) model is still critical, but only in the
sense that the correlations decay algebraically with distance.

In section 2 we describe the YB equations on the triangular lattice. In section 3 we obtain
a number of intersections between a Potts model and an O(n) model using intermediate
mappings onto a spin-1

2 and a spin-1 vertex model. This results in eight branches of O(n)
critical points. In section 4 we investigate the relation of these branches with the critical
branches on the square lattice. Two branches are also related to a Potts model on the
triangular lattice. This is shown in section 5. A numerical analysis of the branches was
carried out by means of transfer-matrix calculations. The specific problems for transfer-
matrix calculations for the triangular O(n) model are treated in section 6. Section 7 contains
the results of our calculations and section 8 gives the conclusions.

2. YB equations for the triangular lattice

We have checked for the possible presence of solvable models by solving the YB equations
for the triangular lattice. These cover a larger parameter space than the corresponding
equations for the square lattice, and could thus possibly yield new universality classes. To
analyse the YB equations we have chosen a loop representation of the O(n) model (see
section 3). We have restricted ourselves to a fully packed loop model such that all edges
of the lattice are covered by a loop. The allowed loop configurations on a vertex of the
triangular lattice appear in figure 6, with labelsρ10 and ρ11. Taking into account rotated
versions, there are five different vertices. Independent Boltzmann weights may be assigned
to each of these. The weight of a loop is denotedn.

Although the loop representation has a non-local nature, it is still possible to formulate
YB equations [7]. To this purpose, the lattice is divided in two parts: an internal part
consisting of two adjacent lattice sites and the remaining external part. Separation of both
parts leaves 10 ‘dangling bonds’ for each part. Now replace the internal part by one of the
configuration of three vertices shown in figure 1(a) (these also have precisely 10 dangling
bonds). A graphical representation of the YB equations as shown in figure 1(a), expresses
the condition that the interchange of both internal parts shown leaves the partition function
invariant. Since the two vertices belonging to the original lattice interchange weights, and
the process of replacement can be repeated indefinitely in one of the lattice directions, the
YB equations guarantee that the vertex weights may be interchanged between two adjacent
rows of vertices. Thus, the transfer matrices associated with both rows of spins commute.
As a consequence of the existence of a family of commuting transfer matrices parametrized
by a continuous parameter, exact solutions may be found [8].
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Figure 1. (a) YB equations for the triangular lattice. A summation of the Boltzmann weight
over the internal indices on the left-hand side is required to produce the same result as the same
for the right-hand side. This equality must hold for all possible choices of the external indices.
(b) Example of a specific YB equation.

For a given a configuration of external vertices{ve} and internal vertices{vi}, the
Boltzmann weight consists of three factors. These areue({ve}) depending only on the
exterior, ui({vi}) depending only on the interior, andnl where l is the number of loops
that is closed when the two parts are connected. This number depends only on the way in
which the dangling bonds of the internal part are interconnected by internal loop parts, and
the same for the external dangling bonds. In other words, the number of loops closed by
merging both lattice parts depends only on the internal connectivityci({vi}) and the external
connectivityce({ve}). It is thus denotedl(ci, ce). We note that the partition function of the
loop model

Z =
∑
{ve}

ue({ve})
∑
{vi }

ui({vi})nl(ci ,ce) (1)

can be rewritten

Z =
∑
ce

∑
ci

∑
{vi }|ci

ui({vi})nl(ci ,ce)
∑
{ve}|ce

ue({ve})

or

Z =
∑
ci

Ui(ci)Pe(ci) (2)

whereUi(ci) =
∑
{vi }|ci ui({vi}) and Pe(ci) =

∑
ce

∑
{ve}|ce ue({ve})nl(ci ,ce). Now replace

the internal part in line with figure 1(a) and denote the new internal weights by primed
quantitiesu′i andU ′i . Invariance of the partition sum implies that∑

ci

Ui(ci)Pe(ci) =
∑
ci

U ′i (ci)Pe(ci) (3)
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for which it is sufficient to require

Ui(ci) = U ′i (ci) (4)

for all possible 10-point connectivities; this yields 42 equations. A specific equation is
represented in figure 1(b). Another way to write the partition function is

Z =
∑
ce

Wi(ce)Ue(ce) (5)

where

Wi(ce) =
∑
ci

Ui(ci)n
l(ci ,ce) (6)

andUe(ce) =
∑
{ve}|ce ue({ve}). This yields a different way to formulate the invariance of

the partition function, namely by requiring

Wi(ce) = W ′i (ce). (7)

Note that equations (7) follow from equations (4) after multiplication by the matrixnl(ci ,ce).
Thus, at first sight it seems possible that equations (7) may allow more solutions than
equations (4). However, we have checked that the matrixnl(ci ,ce) is non-singular for general
values ofn; this shows that it is sufficient to solve the YB equations as expressed by
equations (4).

We have set up the YB equations on the triangular lattice as a condition for the
commutation of transfer matrices. When the vertices in the normal YB equations for the
square lattice are interpreted not as Boltzmann weights but as collision amplitudes, the same
equations can be viewed as a condition on the two-particle collision process necessary for
the factorization of multiple-particle collisions into two-particle processes. In the same way,
the YB equations for the triangular lattice can be viewed as a condition for factorization into
three-particle collisions. Unfortunately all solutions to the triangular YB equations that we
found, factorize into solutions of the square-lattice YB equation. Of course, this does not
exclude the possibility that solutions without such a factorization exist in larger or different
classes of models.

3. Derivation of the critical branches

As explained in the introduction, critical points of the O(n) model on the triangular lattice
can be derived as the intersection of this model with a Potts model. The derivation of this
intersection is quite similar to that for the case of Potts and O(n) models on the square lattice.
For this reason we refrain from giving a detailed explanation of the mappings involved; for
more details we refer to [2]. We consider the isotropic case and take into account the bulk
properties only.

We start with a Potts model on the honeycomb lattice. At every site of the lattice is
a q-state spinσi . Defining the interactions of this model by means of local Boltzmann
weights, the weightW of an elementary hexagon is expressed in nearest-neighbour bond
weightsf2 and face weightsf6:

W(σi, σj , σk, σl, σm, σn) = f2(σi, σj )f2(σj , σk) · · · f2(σn, σi)f6(σi, σj , σk, σl, σm, σn) (8)

wherei, j, . . . , n label the spins clockwise, and

f2(a, b) = [1+ xδab]1/2 (9)
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Figure 2. Surrounding lattice with the type-2 and type-6 vertices containing two and six leaves
respectively.

and

f6(a, b, c, d, e, f ) = u+ w(δac + δbd + δce + δdf + δea + δf b)+ z(δad + δbe + δcf )
+r(δacδce + δbdδdf )+ s(δacδdf + δbdδea + δceδf b). (10)

The weightsx,w, r, s andz correspond to different types of bonds. The partition function
is

Z =
∑
σi

∏
faces

W(σi, σj , σk, σl, σm, σn). (11)

It can be rewritten by expanding the product. Each term is represented by a graph displaying
theδij as bonds between pairs of spinsi andj . By summing over the Potts spins we obtain

Z =
∑
G
qNcxNxwNwzNzrNr sNsuNu (12)

whereNc is the number of components, andNx , Nw, Nr , Ns , andNz are the numbers of
bonds of the type specified by the subscript according to the respective coefficients inf2

andf6. The number of empty faces is given byNu = N/2− Nw − Nz − Nr − Ns where
N is the total number of sites. The sum is over all graphsG.

Following Baxteret al [9] this graph model can also be formulated as a loop model on
the surrounding lattice. This lattice is shown in figure 2. It has two types of vertices, one
with two leaves, and weightf2, and one with six leaves, and weightf6. Each graphG of
equation (12) corresponds to a loop configurationL on the surrounding lattice as is shown
in figure 3. The loops are uniquely defined by demanding that they do not intersect each
other, that they do not cross the bonds ofG and do cross the absent bonds. The number
of loops can be expressed in properties ofG by Nl = Nc +Ni , whereNl is the number of
loops ofL andNi the number of inner circuits ofL, i.e. the number of loops of graphG.
Using Euler’s relationNc = N − Nx − Nw − Nz − 2Nr − 2Ns + Ni the partition function
becomes

Z = qN/2
∑
L

√
q
Nl

(
x√
q

)Nx ( w√
q

)Nw ( z√
q

)Nz ( r
q

)Nr ( s
q

)Ns

uNu . (13)

The sum is over all possible loop configurations covering the surrounding lattice.
This loop model is mapped onto a spin-1

2 vertex model by orienting the loops with
arrows. Thus, each type-2 vertex and type-6 vertex has an ice-type configuration of
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Figure 3. Relation between the graphsG and loopsL. The heavy lines between the sites
represent the bonds in the graph representation. The other lines represent the corresponding
loop segments in the loop representation.

arrows, the number of arrows pointing in is equal to the number of arrows pointing out.
Following the loops in the direction of the arrows each turn of angleα is assigned a
weight exp(iαφ/2π). Summation over all possible orientations given a loop configuration
contributes the prefactor

√
q
Nl if φ is defined by

√
q = eiφ + e−iφ = 2 cos(φ). (14)

The two terms account for the anticlockwise and clockwise orientation respectively.
The original partition function is recovered by first summing over all possible

orientations of a given loop configuration and then summing over all loop configurations.
When, however, the summation over the loop configurations is performed first given the
orientation of each edge, one obtains a spin-1

2 vertex model. An example of how to calculate
a spin-12 vertex weight is given in figure 4.

The spin-12 vertex model on the surrounding lattice can be mapped onto a spin-1 vertex
model on the triangular lattice by combining the two spin-1

2 variablessi1 andsi2 on a leaf to
a spin-1 variableSi on a single edge.Si is defined assi1+ si2 and can take the values−1, 0
and 1. WhenSi = 0, there is an internal degree of freedom, i.e. the sign ofsi1. The weights
of the type-2 vertices can only be transferred to the type-6 vertices if this internal degree of
freedom can be factorized. This factorization is realized forx = −1. The resulting spin-1

Figure 4. An example of how to calculate a spin-1
2 vertex weight on a type-6 vertex.

This vertex has a weightS(φ) + V (φ) whereS(φ) = s exp(−2iφ/3)/4 cos2(φ) and V (φ) =
v exp(iφ/3)/2 cos(φ).
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Figure 5. Spin-1 vertices on the triangular lattice with their Boltzmann weights. Vertices which
are not shown are rotated versions of those shown, and have the same Boltzmann weight.

vertices are given in figure 5 and their weights are

w1 = 3s + 2r + 2w(12 cos(φ)2− 9)+ u(2 cos(4φ)− 2 cos(φ)+ 1)+ 12z(cos(φ)2− 1)

w2 = w∗8 = (4w + 2z)ei 4
3φ + uei 10

3 φ + (s + r − w − 2z)e−i 2
3φ + we−i 8

3φ

w14 = w∗20 = −uei 5
3φ − (2w + z)e−i 1

3φ + ze−i 7
3φ

w26 = s + u+ 2w cos(2φ)

w32 = w38 = r − z+ 2w cos(2φ)

w44 = w∗50 = wei 4
3φ + se−i 2

3φ

w56 = w∗62 = (w + u)ei 8
3φ + (u+ s + z+ 3w)ei 2

3φ + (w + r)e−i 4
3φ

w68 = −z
w74 = s − 2z+ 2w cos(2φ)

w80 = w∗83 = (z+ u)ei 8
3φ + (u+ 2z+ 2w)ei 2

3φ + se−i 4
3φ

w86 = w98 = w∗92 = w∗104= zei 5
3φ − we−i 1

3φ

w110= w116= −2(z+ w + u) cos(φ)

w122= s
w128= w∗134= (r + w)ei 2

3φ + (w + s)e−i 4
3φ

w140= (12w + 4u) cos(φ)2+ 2r cos(2φ)+ 3s.

(15)

The others of the 141 weightswk satisfywk = wk−1, and correspond to rotated versions of
the preceding vertex. All the weights were multiplied by the common factor of 4 cos(φ)2.

For some choices of the weights this spin-1 vertex model can be transformed into special
cases of an O(n) model, called ‘branches’. This O(n) model consists ofn-component unit
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Figure 6. Loop configurations of the O(n) model on the vertices of the triangular lattice with
their Boltzmann weightsρ1, . . . , ρ11.

vectors,s, living on the sites of a honeycomb lattice. The multispin interactions are defined
by the Boltzmann weight, which is written as a product over the faces of the lattice:

W =
∏
faces

[ρ1+ ρ2(si · sj )+ ρ3(si · sk)+ ρ4(si · sl)+ ρ5(si · sl)(sj · sk)

+ρ6(si · sj )(sk · sl)+ ρ7(si · sj )(sl · sm)+ ρ8(si · sk)(sl · sn)
+ρ9(si · sk)(sl · sm)+ ρ10(si · sl)(sj · sk)(sn · sm)
+ρ11(si · sj )(sk · sl)(sm · sn)+ other terms]. (16)

The vectors are labelled with indicesi, j, . . . , n in a clockwise fashion around each face. The
other terms are obtained by cyclically permuting and inverting the indicesi, j, k, l, m andn.
A high-temperature expansion maps this model onto a dilute loop model on the triangular
lattice [4]. Each term of the expansion represents a graph, consisting of a configuration of
non-intersecting loops. Each loop has a weightn. The partition function of this O(n) loop
model is

Z =
∑
L
nNlρ

N1
1 ρ

N2
2 · · · ρN11

11 (17)

whereρ1, . . . , ρ11 are the local weights of the loop configuration on a vertex as defined in
figure 6. The sum is over all (dilute) loop configurations. The loop version of the O(n)
model can be mapped onto a spin-1 vertex model by orienting the loops. In analogy with
the Potts model a turn of angleα has a weight exp(iαψ/2π). The loop weightn is then
equal ton = 2 cosψ .

Thus we have defined two spin-1 141-vertex models, one with parametersu, v, w, r, s
andφ based on the Potts model, and one with parametersρ1, . . . , ρ11 andψ based on the
O(n) model. According to the argument described in the introduction, the intersection points
of these two spin-1 vertex models are good candidates for critical points of the O(n) model.
Equating the two sets of weights and eliminatingρ1 · · · ρ11, four independent relations
remain, namely

(u+ 3w + z) cos( 2
3φ)+ r cos( 4

3φ)+ (u+ w) cos( 8
3φ) = (r + 2w cos(2φ)− z) cos( 2

3ψ)

(18a)

(u+ 2w + 2z) cos( 2
3φ)+ s cos( 4

3φ)+ (u+ z) cos( 8
3φ)

= − z cos( 1
3ψ)+ (s + 2w cos(2φ)− 2z) cos( 2

3ψ) (18b)

[z cos( 5
3φ)− w cos( 1

3φ)] cos( 1
2ψ) = −(u+ w + z) cos(φ) cos( 1

6ψ) (18c)
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[(2u+ 6w) cos(φ)2+ r cos(2φ)] cos( 1
3ψ)

= [(r + w) cos( 2
3φ)+ (s + w) cos( 4

3φ)− s cos( 2
3ψ)] cos(ψ). (18d)

These equations lead to eight branches parametrized byn. The first two solutions have
u = w = z = 0 andψ = 2φ or ψ = 2φ − 3π . We refer to them as branches 0 and 1. The
O(n) weights follow as

ρ1 = 3s + 2r, 3s + 2r

ρ2 = s + r,−(s + r)
ρ3 = ρ8 = ρ9 = 0, 0

ρ4 = ρ7 = ρ10 = s, s
ρ5 = s,−s
ρ6 = r, r
ρ11 = r,−r
n = 2 cos(2φ),−2 cos(2φ)

(19)

where we have first denoted the weight of branch 0 and then, separated by a comma, that
of branch 1. These branches contain a free parameter, namely the ratio ofs andr.

The critical branches 2 and 3 come from the solutions = 0, r = −w = −z = 1 and
ψ = 4φ − 3π . The resulting weights are

ρ1 = 64 sin(φ)6− 2 cos(4φ)

ρ2 = 16 sin(φ)4+ 1

ρ3 = 8 sin(φ)3+ 2 sin(φ)

ρ4 = 8 sin(φ)2

ρ5 = ρ8 = ρ11 = 1

ρ6 = ρ7 = 4 sin(φ)2

ρ9 = 2 sin(φ)

ρ10 = 0

n = −2 cos(4φ).

(20)

For each value ofn, φ can take two values,α = 1
4 arccos(−n/2) andπ/2−α (0< α < π/4),

which results in two independent branches, 2 and 3 respectively.
Four more critical branches come from the solution

u = −4 sin
(

2φ − π
3

)
[cos(5φ)+ 2 cos(3φ)+ cos(φ)]

s = 8
√

3 sin(φ)2 sin
(
φ + π

6

)
z = −16 cos

(
2φ + π

6

)
cos

(
φ + π

3

)
cos(φ)2

w = 2 cos(φ)2 sin
(
φ + π

6

) [
8 sin(2φ) sin

(
4

3
φ + π

6

)
− 4
√

3 cos

(
2

3
φ

)]/
cos

(
4

3
φ

)
r = 4[cos(2φ)+ 1]

[
sin
(

3φ − π
3

)
+ 2 sin

(
φ + π

3

)
+ sin(φ)

]
ψ = π − 4φ.

(21)
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This leads to the following weights

ρ1 = 4 sin(φ) cos

(
8φ + 2π

3

)
− 4
√

3 cos(5φ)+ 4 sin(3φ)+ 5
√

3 cos(φ)+ 3 sin(φ)

ρ2 = 2 sin(2φ)
[
−2 cos(5φ)+ 2

√
3 sin

(
φ + π

3

)]
ρ3 = 4 sin(2φ) sin

(
4φ + π

3

)
ρ4 = 2 cos

(
φ − π

3

) [
2 sin

(
4φ − 2π

3

)
+ 2 sin

(
2φ + 2π

3

)
+
√

3

]
ρ5 = 4 sin(2φ) cos

(
φ − π

3

)
ρ6 = 8 sin(2φ)2 sin

(
φ + π

3

)
ρ7 = 2 sin

(
5φ − 2π

3

)
− 2 sin(3φ)− 4 sin

(
φ − 2π

3

)
ρ8 = 4 sin

(
2φ + 2π

3

)
cos

(
φ + π

3

)
ρ9 = 4 sin(2φ) sin

(
2φ + 2π

3

)
ρ10 = 2

√
3 cos

(
φ − π

3

)
ρ11 = 8 sin

(
φ + π

3

)
cos

(
φ − π

3

)2

n = −2 cos(4φ).

(22)

For eachn there are four values ofφ corresponding to different weights, namelyφ =
α, π2 − α, α + π

2 and, π − α (0 < α < π/4). These are denoted branch 4, 5, 6 and 7
respectively.

4. The relation with the O(n) model on other lattices

For the O(n) model on the square lattice, five critical branches have been described [2, 3].
It is to be expected that the critical behaviour of these branches will be related in terms
of universality to the O(n) model on the triangular lattice. For the critical branches 2–7
there exists a simple relation with the O(n) model on the square lattice. The weights of
these branches are such that the O(n) model can be mapped onto the Kagomé lattice. This
mapping replaces each vertex of the triangular lattice by three vertices of the Kagomé lattice
(see figure 7(a)). These three vertices form an internal triangle. The Boltzmann weights of
the Kagoḿe vertices are determined by demanding that the sum of the combined Kagomé
weights over the internal indices is equal to the triangular weight for each choice of the
external indices. Thus (see also figure 7(a))

∀i, j, k, l, m, n :

W(i, j, k, l, m, n) =
∑
abc

WK(n, i, b, a)WK(j, k, c, b)WK(l,m, a, c)
(23)

whereW(i, j, k, l, m, n) are the Boltzmann weightsρ1–ρ11 of equations (19), (20) and (22),
andWK are the Boltzmann weights of the vertices on the Kagomé lattice. An example of
a graphical representation of equation (23) can be found in figure 7(b).
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Figure 7. Relation between the triangular lattice and the Kagomé lattice. (a) Each vertex of the
triangular lattice corresponds to three vertices of the Kagomé lattice as denoted in the circles.
The weights of the Kagoḿe lattice obey equation (23), which is graphically represented. (b) An
example of a graphical representation of equation (23).

Figure 8. Loop configurations with Boltzmann weights on a Kagomé vertex.
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The loop configurations on a Kagomé vertex are given in figure 8. For branches 2 and
3 the vertex weightsγ and the loop weightn are

γ1 = 4 sin(φ)2

γ2 = γ4 = γ6 = 1

γ3 = 2 sin(φ)

γ5 = 0

n = −2 cos(4φ)

(24)

whereφ = α andφ = π/2− α (0< α < π/4) respectively. For branches 4–7 the Kagomé
weights are

γ1 = 4 cos
(

2φ − π
3

)
sin
(
φ + π

3

)
cos

(
φ − π

3

)
− sin(2φ)

γ2 = sin(2φ)

γ3 = −2 sin(2φ) sin
(
φ + π

3

)
γ4 = sin

(
2φ + 2π

3

)
γ5 = 1

2

√
3

γ6 = sin(2φ)+ 1
2

√
3

n = −2 cos(4φ)

(25)

whereφ = α, π/2− α, α + π/2, π − α (0< α < π/4) respectively.
These two sets of weights (equations (24) and (25)) coincide with the general solution

for the critical behaviour of the O(n) model on the square lattice as given in equation (15)
of [2] for a special choice of the spectral parameterψ in that equation. For the first set
ψ = φ/2 and for the second setψ = φ/2+ 2π/3. For eachn the weights of equation (15)
of [2] have four essentially different values, representing different critical behaviour. In
figure 9 we have indicated for each value ofφ andψ the corresponding branch on the
square lattice [10]. The two sets of Kagomé weights are denoted by the broken and dotted
lines.

The model of equation (15) in [2] is solvable; it is known as the Izergin–Korepin model
[11] and satisfies the YB equations. From analytical work [12] and numerical work [3]
it follows that the solution is critical. In [3] the conformal anomaly and some critical
dimensions were obtained using transfer-matrix calculations. These were done for the
isotropic case of the model of equation (15) of [2], for which the spectral parameter is equal
to ψ = π/4. It appeared that branches 1 and 2 of the O(n) model on the square lattice
represent the critical behaviour and the low-temperature behaviour. These branches also
occur on the honeycomb lattice [1, 2, 13]. Branch 3 represents the multicritical behaviour
of a model with Ising and O(n) degrees of freedom and branch 4 describes a superposition
of a critical Ising model and a low-temperature O(n) model. Later the conformal anomaly
was also determined analytically (see [14]).

Because the weights on the Kagomé lattice satisfy the YB equations, the horizontal lines
of the lattice can be shifted downwards, resulting in three square lattice parts. Therefore
we may find the same behaviour for branches 2–7 on the triangular lattice as for the model
on the square lattice.

Before we discuss the relation of branches 0 and 1 with the O(n) model on the Kagoḿe
lattice, we first discuss their equivalence with a fully packed loop model. Because of a
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Figure 9. Comparison of O(n) models on different lattices. For each value ofφ andψ , used in
equation (15) of [2] the corresponding branch on the square lattice is indicated by the numbers
1–4. The broken line represents the weight on the Kagomé lattice for whichψ = φ/2, and the
dotted line for whichψ = φ/2+ 2π/3: the weights of equations (20) and (22) respectively.
The corresponding branches on the triangular lattice are indicated on the bars below.

symmetry property of the partition function on the triangular lattice the fully packed model
can be described by two equivalent sets of Boltzmann weights (see below). Branches 0 and
1 obey the same kind of symmetry. As a review of the relations between the fully packed
loop model, branches 0 and 1 are given in table 1. The explanation is given below.

The fully packed O(n) loop model has only two non-zero vertex weights;ρ10 = s and
ρ11 = r. Because each contractible loop has an odd number of turns, we may include
a minus sign in the weight of these turns, and compensate that with a minus sign in the
weight of each contractible loop. We note that the number of non-contractible loops (those
spanning the cylinder) is always even, at least for fixed boundary conditions at the ends of
the cylinder. Thus,n may also be replaced by−n for these loops. Thus the partition sum
Zf of the fully packed loop model satisfies

Zf (s, r, n) = Zf (s,−r,−n). (26)

There is an inversion symmetry in the(r, n) plane with respect to (0,0).
Next we interpretZf as the partition sum of a two-coloured loop model; loops are either

red or blue. The red loops have weightn− 1, and the blue loops have weight 1. Summing
over all possible ways to colour the loops will thus reproduce the correct loop weightn.
Because the blue loops have weight 1, their degrees of freedom are independent and can be
summed out given a configuration of red loops. What remains is a dilute loop model with
loop weightn− 1 and a partition functionZ0 satisfying

Z0(s, r, n− 1) = Zf (s, r, n). (27)
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Table 1. Equivalences between the two fully packed representations (above) and the two dilute
representations of branches 0 and 1. The operatorN changes the sign of the loop weight, as
well as that of some vertex weights as described in the text. The operators±1 transform the
dense O(n) loop models into dilute models with loop weightsn∓ 1. From the left to the right,
the columns represent branch 0 with parameterss, r andn− 1; branch 1 withs, −r andn+ 1;
branch 0 withs, −r and−n−1; and branch 1 withs, r and−n+1. Only the non-zero weights
are shown.

The vertex weights of branch 0 are obtained by a summation over the blue degrees of
freedom. For example the weight of a type-2 vertex isr + s, because it can be covered by
vertices of type 10 and 11 (with two blue loop parts and one red loop part).
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Using equation (26), this mapping can equivalently be applied to the fully packed model
with the weightss, −r and−n. This yields an equivalent set of Boltzmann weights for
branch 0, as shown in the third column of table 1. Thus for branch 0 we have

Z0(s, r, n− 1) = Z0(s,−r,−n− 1). (28)

In this case the inversion symmetry in the(r, n) plane is with respect to the point(0,−1).
Also, branch 1 can be derived from the fully packed model, and can thus be described

by two sets of Boltzmann weights. The first set is obtained by starting from the fully packed
model with weightss, r andn. This is equivalent to a two-colour loop model, where the
red loops have weightn+1 and the blue loops have weight−1. In order to compensate the
factor of−1 in the weight of a blue loop, we assign a factor of−1 to each blue turn. For the
blue loops around the cylinder a seam of modified vertex weights is added to compensate
the factor of−1. Summing out the blue degrees of freedom we obtain the O(n+ 1) dilute
loop model with the bulk weights of branch 1 (see equation (19)). Thus

Z̃1(s,−r, n+ 1) = Zf (s, r, n) (29)

whereZ̃ is the partition function of the cylinder with a seam. The bulk weights are given
in the second column of table 1.

Starting from the fully packed model with weightss, −r and−n, the second set of
Boltzmann weights is obtained in the same way. These weights are given in column 4 of
table 1 and in equation (19). Thus, for branch 1 the symmetry relation is

Z̃1(s,−r, n+ 1) = Z̃1(s, r,−n+ 1). (30)

The inversion symmetry is with respect tor = 0 andn = 1.
Since branches 0 and 1 can be mapped onto the fully packed model, they must be

equivalent. This equivalence is easily shown without using the fully packed model. It
is possible to compensate the minus sign of the loop weight, because only sharp turns
are allowed and each contractible loop has an odd number of turns. Loops spanning the
cylinder obtain the right weight when a seam is added in the case of branch 1. The weights
of column 4 are obtained from those of column 1 by changing the signs of the loop weight
and of the weights of the vertices with an odd number of sharp turns. The same holds for
the weights in columns 2 and 3 in table 1. Thus

Z0(s, r, n) = Z̃1(s, r,−n). (31)

We show the relation of branches 0 and 1 with the O(n) model on the Kagoḿe lattice
using the same kind of relation for the fully packed model. For two ratioss/r the triangular
fully packed loop model can be mapped onto a fully packed loop model on the Kagomé
lattice. Solving equation (23) with only non-zero weightsρ10, ρ11, γ5, γ6 andn it follows
that the two solutions are given byρ10 = s = 2r cos(2φ/3), ρ11 = r, n = 2 cos(2φ), γ5 =
r1/3[2 cos(2φ/3)]−2/3 and γ6 = [2r cos(2φ/3)]1/3 and byρ10 = s = 2r cos(2φ/3), ρ11 =
−r, n = −2 cos(2φ), γ5 = −r1/3[2 cos(2φ/3)]−2/3 andγ6 = [2r cos(2φ/3)]1/3. In [15] it is
shown that the O(n) model with only non-zero weightsγ5 andγ6 satisfies the YB equations.
Thus the Kagoḿe lattice can be transformed into three square lattices. The weights for the
fully packed loop model on the Kagomé lattice can also be mapped, via a two-colour model,
on a dilute loop model with loop weightn − 1 for the first solution and with loop weight
−n − 1 for the second solution. Thus, two points of branch 0 on the square lattice are
obtained as described in equation (12) of [2]. From the numerical work [3] it appears
that this branch with loop weightn is equivalent to the low-temperature behaviour of the
O(n+ 1) model of branch 2.
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From the existence of two exactly solvable points for the fully packed loop model it
follows that branch 0 also has two sets of exactly solvable points. The first set is described
by s = 2r cos(2φ/3), r = r and n = 2 cos(2φ) − 1 and the second set is described by
s = 2r cos(2φ/3), r = −r andn = −2 cos(2φ)− 1. If the weights of the loops are given
by n′ we expect for the first set of weights a low-temperature O(n′ + 1) behaviour and for
the second set a low-temperature O(−n′ − 1) behaviour.

Also, branch 1 with seam has two sets of points which can be mapped onto the
Kagoḿe lattice, namelyρ10 = s = 2r cos(2φ/3), ρ11 = r and n = 2 cos(2φ) + 1 and
ρ10 = s = 2r cos(2φ/3), ρ11 = −r and n = −2 cos(2φ) + 1. Thus, for these points we
expect low-temperature O(n′ − 1) behaviour and low-temperature O(−n′ + 1) behaviour
respectively.

5. Relation of branches 0 and 1 with Potts models

The fully packed loop model, defined in section 4, not only describes branches 0 and 1
of the O(n) model, but it also describes the self-dual line of aq ′-state Potts model with√
q ′ = 2 cos(2φ)+1. This Potts model can thus be transformed into theq-state Potts model

(
√
q = 2 cos(φ)), defined in section 3. This will be shown below.
The q ′-state Potts model is defined on the triangular lattice. Triangular lattice Potts

models with three-spin interactions in all triangles are described in [16]. Here, at every site
there resides a Potts spinσi with nearest-neighbour couplingsJ and three-spin couplings
K only in the left triangles. The partition function is given by

Z =
∑
σ

∏
G

[1+ a(δσiσj + δσj σk + δσkσi )+ bδσiσj σk ] (32)

where 1+ a = exp(J ) and 1+ 3a + b = exp(3J +K) and the product is over all triangles
pointing to the left. Equation (32) can also be rewritten as the partition function of a loop
model with loop weight

√
q ′ and with vertex weights 1, a/

√
q ′ and b/q ′ (see figure 10).

Duality indicates that the model is critical forb/q ′ = 1 [17]. This can easily be seen by
comparing this model with a Potts model with three spin interactions only in the triangles
pointing to the right. The model also coincides with the fully packed representation of
branches 0 and 1 of the O(n) model on the triangular lattice, with

√
q ′ = 2 cos(2φ)+1 and

s/r = a/√q.
The relation of branches 0 and 1 on the one hand with a Potts model with

√
q = 2 cos(φ),

and on the other hand with a Potts model with
√
q ′ = 2 cos(2φ)+ 1, can be seen directly.

The Potts model on the honeycomb lattice defined in equation (13) withu = w = z = 0
and x = −1 can be mapped onto the Potts model on the triangular lattice, defined in
equation (32), at its self-dual line (b = q ′). The mapping is as follows. We start with
the loop representation of the Potts model on the honeycomb lattice (see equation (13)).
Becauseu = w = z = 0 loops occur only in the form of double-loop segments (segments
of these double loops are separated by the Potts bond variables). This makes it possible to

Figure 10. Loop configurations for the Potts model on the triangular lattice with their Boltzmann
weights. The full circles represent the Potts spins of the triangular lattice.
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Figure 11. Correspondence between the loop weights of two Potts models. One single loop
with weight q − 1 represents the sum over all bond configurations on the edges crossed by a
pair of loops with loop weight

√
q. The weight of a bond is−1/

√
q.

sum out the bonds on the edges given a configuration of the allowed vertices. If there are no
bonds on the edges the configurations consist ofNl/2 double loops. These configurations
are denotedL′. The bonds can be summed out independently for each pair of loops, thus
the partition sum is written as

Z =
∑
L′

(
r

q

)Nr ( s
q

)Ns √
q
Nl

∏
double loops

[∑̃
bonds

(
x√
q

)m√
q
1Nl

]
(33)

where
∑̃

bonds is a sum over the bonds on all the edges that are crossed by a certain double
loop, m is the number of placed bonds on the double loop and1Nl is the change in the
number of loops by placing the bonds on the edges. The first present bond decreases the
number of loops by 1, the following bonds increase the number of loops by 1 (see figure 11).
Thus, ifNe is the number of edges that cross a double loop, the summation over the bonds
leads to

1+
Ne∑
m=1

(
Ne
m

)(
x√
q

)m√
q
m−2

. (34)

Using Newton’s binomium andx = −1 this is equal to 1−1/q. Because we have summed
out the bonds on the edges only double loops remain. These can be replaced by single
loops with a weightq − 1 = 2 cos(2φ) + 1. The vertices of this loop model are precisely
those of figure 10. Thus, from the loop representation of theq-state Potts model on the
honeycomb lattice we have derived the loop representation of theq ′-state Potts model on the
triangular lattice at its self-dual line. The relation between both Potts models is

√
q ′ = q−1.

These Potts models are of a different nature: the honeycomb model is a zero-temperature
antiferromagnet (as far as nearest-neighbour pairs are concerned), while the triangular model
is in the critical state separating the ordered and disordered phases.

The relation between the two Potts models can be seen even more directly if they are
treated as Temperley–Lieb models [17]. The corresponding adjacency diagrams are drawn
in figure 12. The largest eigenvalue of the adjacency matrix is the loop weight [18]. In this
case they areq − 1 and

√
q ′ for the honeycomb and the triangular lattice respectively. The

models are only equivalent if the loop weights equal, thus
√
q ′ = q − 1.

6. The transfer-matrix calculations

To obtain the free energy per site and the correlation length of these eight branches we have
performed transfer-matrix calculations. The construction of a transfer matrix for the loop
model on the square lattice is described in some detail in [3]. It requires a coding of O(n)
connectivities by means of the integers 1, 2, 3, . . . , which serve as transfer-matrix indices.
This coding is directly applicable to the O(n) model on the triangular lattice; however, the
sparse matrix method for the triangular lattice remains to be explained.
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Figure 12. Adjacency diagrams of theq ′-state Potts model on the triangular lattice and of the
q-state Potts model on the honeycomb lattice.

The transfer matrix is defined in the following way. The loop model on the triangular
lattice is wrapped onto a cylinder with circumferenceL. The transfer matrixT adds an
extra row to the cylinder, thus the action ofT is expressed by

Z(M+1)
L = TL ·Z(M)

L (35)

whereZ(M)
L is a vector of restricted partition functions with a connectivityα of a cylinder

with circumferenceL and lengthM.
By factorizing the transfer matrix into sparse matrices, which add only one vertex, the

computer time and memory requirements are reduced enormously. For a triangular lattice
we need three types of sparse matrices,TL = Tl · (Tm)(L−2) · Tb. Adding a new row,
we start with a complete last row which has 2L dangling bonds (see figure 13(a)). Tb
adds the first vertex of a new row, resulting in a cylinder with 2L + 2 dangling bonds
(see figure 13(b)). Tm adds the following vertex and is also used for the followingL − 3
vertices (see figure 13(b)). ThenTl completes the new row and thus reduces the number
of dangling bonds from 2L + 2 to 2L again. The matrices do not only add a new vertex,
but also permute the vertices in such way that the sameTm can be used forL− 2 vertices.

The programming of these sparse matrices is rather tedious for the triangular lattice
because there are many possible ways to add a new vertex, in comparison with the square
lattice. Fortunately for branches 0 and 1 all turns 2π/6 have weight 0. This reduces the
number of possibilities which makes the programming practicable.

For branches 2–7 the transfer matrix can be factorized in even more sparse matrices
because these branches can be mapped onto the Kagomé lattice. For each triangular vertex
which is added three Kagoḿe vertices are added. From figure 14 it can be seen that some
of these sparse matrices will be equivalent provided that the right permutation of dangling
bonds has been carried out. The transfer matrices for the triangular vertices factorize into
(see figure 14)

Tb = T3 · T2 · T1

Tm = T3 · T4 · T̃1

Tl = T5 · T4 · T̃1

(36)

whereT2 increases the number of dangling bonds by 2 andT5 reduces it by 2. The matrix
T1 works in the space with 2L dangling bonds and̃T1 in the space with 2L + 2 dangling
bonds. Thus the transfer matrix now factorizes into

T = T5 · T4 · T̃1 · (T3 · T4 · T̃1)
(L−2) · T3 · T2 · T1. (37)

The free energy per unit of areafL and the correlation lengthξ−1
L of a cylinder with

circumferenceL are determined by the largest two eigenvaluesλ0 andλ1 of T,

fL = ζ 1
L

logλ0 (38)

ξ−1
L = ζ log(λ0/λ1) (39)
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Figure 13. Topmost row of an O(n) model wrapped on a cylinder with widthL. The circles
denote the dangling bonds and coincide with the sites of the O(n) spins. The open circles are
in the bulk of the lattice and the full circles are on the boundary. (a) Situation with a complete
row. There are 2L dangling bonds. (b) Situation after addition of the first vertex byTb. The
number of dangling bonds is increased by two. (c) Situation after addition of the second vertex
by Tm. The vertices are permuted such thatTm can also be used to add the following vertices.
The number of dangling bonds remains the same. Adding the last vertex byTl decreases the
number of dangling bonds by two, and the situation of (a) is back.

except in special cases that will be discussed later.ζ is the geometrical factor, for the
triangular latticeζ = 2/

√
3. These eigenvalues are calculated numerically using a direct

iteration Hessenberg algorithm as described in [19].
From the theory of conformal invariance [20], relations follow between the free energy

and the conformal anomalyc and between the correlation length and the anomalous
dimensionx (of the pertaining correlation function). Namely

fL ' f∞ + πc

6L2
(40)

ξ−1
L '

2πx

L
. (41)

Thus an analysis of the results for finite systems, using an iterated fit procedure as described
in [3] yields the determination ofc andx.
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Figure 14. Topmost rows of the O(n) model on the Kagoḿe lattice wrapped on a cylinder with
finite size three. Going from (a) to (g) we have represented the action of the transfer matrices
T1, . . . ,T5 as indicated in the figure. Thus, the situation in (b) is obtained from the situation in
figure 14(a) after multiplication byT1.

7. Results

We have determined the two leading eigenvalues for branches 0–7 of the O(n) model on
the triangular lattice to determine the conformal anomaly and the thermal exponent. We
will first discuss the results for branches 2–7 and then the results for branches 0 and 1.

7.1. Branches 2–7

Transfer-matrix eigenvalues for the triangular O(n) model were obtained by using the
equivalent model on the Kagomé lattice (section 4). The results for the conformal anomaly
and the thermal exponent for branches 2–5 can be found in tables 2 and 3. It follows from
these results that we may identify the universality classes of these branches with those of
branches 2, 1, 3 and 4 on the square lattice respectively [3]. This is also illustrated in
figure 9. Thus, branch 3 describes the O(n) critical behaviour, branch 2 describes the O(n)
low-temperature behaviour, branch 4 describes the multicritical behaviour of a model with
O(n) and Ising degrees of freedom, and branch 5 the behaviour of a low-temperature O(n)
model plus a critical Ising model. From figure 9 it can be seen that branch 4 has a special
point for n = 1; at this point the analytic form of the conformal anomaly changes [14].

From figure 9 we can see that branches 6 and 7 should be identified with branches
1 and 4 and with branch 2 on the square lattice. However, this is not confirmed by the
numerical results, the results for branches 6 and 7 do not converge. This may be related to
the following. The weightγ2, a vertex with a sharp turn, on the square lattice is determined
up to a sign, because the number of these vertices is always even. However, for the Kagomé
lattice the number of these vertices can also be odd. Thus if the weightγ2 is negative the
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Table 2. The conformal anomalyc for branches 2–5. We have used data for finite size 2 to 7.
Estimated uncertainties in the last decimal places are given between parentheses.

n Branch 2 Branch 3 Branch 4 Branch 5

2.0 1.000 0(1) 1.000 0(1) 1.500(1) 1.500(1)
1.5 0.587 57(1) 0.741 83(2) 1.275(5) 1.088(1)
1.0 0 0.500 000(1) 1.005(3) 0.500 00(1)
0.5 −0.820 0(1) 0.255 95(5) 0.560(1) −0.320(1)
0.0 −2.000(1) 0 0 −1.500(1)
−0.5 −3.81(1) −0.279 00(5) −0.35(1) −3.31(1)
−1.0 −0.600 00(1) −0.600 00(1) −6.52(3)
−1.5 −1.009 7(1) −0.821(1)
−2.0 −1.89(1) 0

Table 3. The thermal exponentxt for branches 2–5. We have used data for finite size 2–7.
Estimated uncertainties in the last decimal places are given between parentheses.

n Branch 2 Branch 3 Branch 4 Branch 5

2.0 2.0000(1) 2.000 0(1)
1.5 1.251 89(1) 0.63(2) 1.000 0(1)
1.0 1.000 00(1) 0.47(1) 1.000 00(1)
0.5 0.817 8(1) 0.24(1) 1.000 0(1)
0.0 0.666 7(1) 0.15(1) 1.000 00(1)
−0.5 0.531 0(1) 0.216(1) 1.000 0(1)
−1.0 0.400 0(1) 0.400 00(1) 1.000 (1)
−1.5 0.260(1) 0.610 1(1)
−2.0 0.03(3)

partition function on the Kagoḿe lattice will be different as on the square lattice. For
branches 6 and 7,γ2 is negative; thus we might expect to find different behaviour as on the
square lattice.

7.2. Branches 0 and 1

As explained in section 4, branches 0 and 1 have two different kinds of loop representations;
a dilute loop representation and a fully packed loop representation. The fully packed model
is not only equivalent to the branches 0 and 1, but also with a Potts model on the triangular
lattice (equation (32)). The results for branches 0 and 1 have to be consistent with the
known results for the Potts model in the region where it is physical (i.e. the Potts model
has positive Boltzmann weights). We discuss the results for branch 0 in more detail. The
results for branch 1 with a seam (see section 4) are similar.

We have determined the largest eigenvalue of the transfer matrix for the dilute
representation as well as for the fully packed representation, for several values ofn andθ .
The ratios/r (see equation (19)) is parametrized ass/r = tan(2πθ). It appears that for both
representations a crossing of eigenvalues occur, indicating a first-order transition between
two regions of different behaviour (see figure 15). However, for one region the leading
eigenvalues of the two representations are not the same. This result is rather paradoxical.
The association the largest eigenvalue ofT with the free energy would imply that the free
energies of both representations are different. However, the mapping between the two loop
models was constructed such that the partition sum remains invariant.
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Figure 15. Free energy per site of branch 0 as a function ofθ for n = 0.5 for the fully packed
representation and forn = −0.5 for the dilute representation. Data are shown forL = 3 and
L = 5. The discontinuity in the derivative of the free energy indicates the first-order transition.

The solution of this paradox is as follows. Since it has not yet been determined whether
the leading eigenvalues of the transfer matrices do actually contribute to the partition
function, it is possible that their contribution vanishes when closing the dangling bonds
of the cylinder with appropriate begin and end vectors. Theith element of the end vector
is, apart from a constant factor, equal tonNi , whereNi is the number of loops closed by
the addition of the end row with some specified connectivity, prior to which the last row of
the cylinder had connectivityi. We have calculated the inproduct of the eigenvectors of the
dilute transfer matrix with the end vectors forL = 2 andL = 3. It appears that only those
eigenvalues which also occur in the fully packed transfer matrix, contribute to the partition
function.

Therefore we have based our calculation the conformal anomaly of the triangular O(n)
model on the largest eigenvalue for the fully packed representation. The results are shown
in figure 16. For eachn there is a range of low-temperature O(n+1) behaviour and a range
of low-temperature O(−n− 1) behaviour.

Another curious phenomenon is that forq = 1, 2, 3 the transition between the O(n+ 1)
and O(−n − 1) behaviour takes place in the region where the Potts model is physical, i.e.
negative Boltzmann weights are absent. This region is to the left of the dotted line and
above the linen = −1 in figure 16. This would seem to indicate the existence of physical
Potts models with non-unitary behaviour, e.g.c is negative for the relevant O(−n − 1)
model. This would be a very strange situation.

However, after closing the fully packed transfer matrix forq = 1, 2, 3 with physical
end vectors which include the weights of the loops that are closed, it appears that the
contribution associated with the largest eigenvalue vanishes. Remarkably, this contribution
does not vanish for generalq.

The behaviour of the Potts model is thus determined by subdominant eigenvalues,
leading to a non-negativec. On the boundary of the physical region (a = −1) the conformal
anomaly changes toc = 0 for integral values ofq, because all spins are frozen out.

Forq = 3 the physics contained in the eigenvalue spectrum displays even more structure.
Meyer et al [21] investigated this model, using Monte Carlo and analytical methods. They
reported a tricritical point in the physical region.
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Figure 16. The two regions of different behaviour of branch 0 as a function ofn and θ
(s/r = tan(2πθ)). The heavy lines represent the first-order transition between the two regions.
The physical region of the Potts model is on the right of the dotted line and above the line
n = −1. The exact solution of branch 0 is indicated by a broken line. For some values ofn

we have indicated the conformal anomalyc obtained from the transfer matrix calculations at
θ = − 1

8 andθ = 1
8 .

For practical reasons the O(n) loop transfer matrix is not suitable to study the behaviour
of this Potts model, because the spectrum is dominated by eigenvalues that do not contribute
to the partition function. For a study of the Potts model it is more practical to use a
transfer matrix using the Potts spin representation. We have done such calculations for the
q = 3 Potts model along its self-dual line, using helical boundary conditions and finite sizes
L = 2, 3, . . . ,12. The self-dual line is characterized byb = 3, while a is a free parameter
(see equation (32)). Thus we estimated the conformal anomaly, using equation (40), for a
range of values ofa. The results are shown in figure 17 in terms of a parameterm defined
by

c = 1− 6

m(m+ 1)
. (42)

For not too small values ofa the data converge well tom = 5 as expected for critical 3-state
Potts models [22]. For lower values ofa, maxima occur with an apparent convergence to a
value close tom = 6, as expected forq = 3 Potts tricriticality. The extrapolated position of
the maximum, i.e. the location of the tricritical point, isatc = −0.79(1). Thus we confirm
the existence of a tricritical point reported by Meyeret al [21]. However, the conjectured
location [21]atc = 0 is different. In order to obtain further evidence for the tricritical value
of a, we have applied transfer-matrix calculations to systems with cylindrical boundary
conditions. Evaluation of the two largest eigenvalues yields the magnetic correlation length
(equation (39)) from which the magnetic dimensionxm can be estimated (equation (41)).
Denoting the estimated dimensionxL(a), one can estimate the tricritical point by solvinga
numerically from

xL(a) = xm,tc (43)
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Figure 17. Results for theq = 3 Potts conformal anomaly in terms of the parameterm. Data
are shown as a function of the nearest-neighbour couplinga for system sizes up toL = 12. mL
is calculated from the free energy densities of systems with sizesL andL− 3.

wherexm,tc = 2
21 is the tricritical magnetic dimension of theq = 3 Potts model. Thus,

we obtained a series of estimates ofatc for L = 2, 3, . . . ,14. Extrapolations, whose
accuracy was somewhat limited due to alternations for lowerL, led to a best estimate
atc = −0.7856(2), in a good agreement with the determination using the maximum ofm.
As a further consistency check, the largest eigenvalues were calculated at this value ofatc
and analysed in order to determine the conformal anomaly. The resultc = 0.857(1) or
m = 6.00(2) is in a good agreement withq = 3 Potts tricriticality.

We return to the dilute loop representation to study branch 1. To obtain the same results
for branch 1 as for branch 0, one may add a seam which compensates the minus sign in
the weight of loops around the cylinder (see section 4). When this seam is built into the
branch-1 transfer matrix, the same results as for branch 0 are obtained. Thus, for branch
1 with a seam there is a region of low-temperature O(n − 1) behaviour as well as one of
low-temperature O(−n+ 1) behaviour.

Next, we determine the conformal anomaly of branch 1. To this purpose we chose
periodic boundary conditions, without a seam. The results are summarized in table 4.

These results can also be calculated exactly. Namely, in analogy with equation (31),
the O(n) model of branch 1 without a seam is equivalent with the O(−n) model of branch 0
with a seam. Thus for the dense version of this branch 0 with a seam the contractible loops
have a weight1 = −n+1 and the non-contractible loops have a weight1′ = n+1. For the
corresponding 6-vertex model the conformal anomaly has been calculated both numerically
and analytically in [22, 23]. It is given by

c = 1− 6k2

h(h− 1)
(44)

where1 = 2 cos(π/h) and1′ = 2 cos(kπ/h). Substitution ofh and k yields an exact
result for the conformal anomaly of branch 1. These results are denoted in the third column
of table 4 for values ofn between 2 and−1. For these values there is a good agreement
between the numerical and the exact data. Notice that the relation betweenh and k is
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Table 4. The numerical and exact result for the conformal anomaly of branch 1. We have used
data for finite size 2–6. Estimated uncertainties in the last decimal places are given between
parentheses.

n cnum cexact

2.0 2.70(2) 2.689 294
1.5 1.70(1) 1.696 143
1.0 1.000(5) 1
0.5 0.453(2) 0.452 9104
0.0 0.0000(0) 0
−0.5 −0.37(1) −0.371 8235
−1.0 −0.6(1) −0.5

transcendent and that valuesc > 1 are possible. A similar result has already been seen for
the tri-tricritical Potts model [7].

8. Conclusions

We have studied the O(n) model on the triangular lattice with the purpose to determine
its critical behaviour. New critical behaviour might be expected because on the triangular
lattice as much as three loops may collide in a single vertex. Thus we have determined
solvable points solving the YB equations for a fully packed loop model on the triangular
lattice. However, we only found the solvable points already known from the square lattice.

We have found eight branches of critical points by constructing intersections between
the Potts model and O(n) model. We have analysed these branches using transfer-matrix
calculations. The critical behaviour of branches 2–5 can be identified by the behaviour of
the critical branches on the square lattice. These branches describe O(n) critical behaviour,
O(n) low-temperature behaviour, the multicritical behaviour of a model with O(n) and Ising
degrees of freedom and the behaviour of a low-temperature O(n) model plus a critical Ising
model. The similar behaviour of these branches with critical branches on the square lattice
can be understood because each vertex weight on the triangular lattice can be replaced by
the weights of three combined Kagomé vertices. The Kagoḿe weights coincide with the
general solution of the critical branches on the square lattice.

The numerical results for branches 6 and 7 do not converge, although the vertex weights
can also be replaced by the weights of three combined Kagomé vertices (with the weights
of the general solution for the square lattice). We probably find different behaviour to
that expected because the boundary conditions for the Kagomé and the square lattice are
different.

Branches 0 and 1 contain a free parameter and obey certain symmetry relations. For
branch 0 we have observed a first-order transition between a region of low-temperature
O(n+ 1) behaviour and a region of low-temperature O(−n− 1) behaviour. Similar results
are observed for branch 1 when a seam is added which compensates a factor of−1 for loops
around the cylinder. We have also analysed branch 1 with periodic boundary conditions.
We have found exactly and numerically a new result for the conformal anomaly. Values of
c > 2 occur.

Branch 0 is also equivalent to aq-state Potts model on the triangular lattice, with three-
spin coupling in the triangles pointing to the left.q is related ton by q = (n + 1)2.
Because the contribution in the partition sum of too many eigenvalues of the transfer matrix
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disappear closing the cylinder, it is more practical to study theq = 3 Potts model analysing
the spin representation of the Potts model. In this way we have located aq = 3 tricritical
point.

Therefore, our method (construction of intersections) works to find critical points. The
behaviour of most of these points are as on the square lattice. The tricritical point of the
q = 3 Potts model with three-spin coupling in the triangles pointing to the left is new (also
found by Meyeret al [21]). However, we have not found the multicritical behaviour of
ternary collisions of, for example, polymers.
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